רפואה נתמכת ראיות
נצלול לתוך הספרות הרפואית בפרקים קצרים, וננסה להבין מאמרים: האם להאמין למאמר, מה התוצאות אומרות, והאם הן רלוונטיות למטופלים. רפואה נתמכת ראיות היא שיטה לקבל ולהבין מידע- מטרתה ליישם את המידע המחקרי הטוב והחשוב ביותר עבור אבחנה וטיפול, תוך התחשבות במאפייני המטופל וערכיו, ושימוש בכל כישוריה של הרופאה/אשת הצוות הרפואי. הפודקאסט מיועד ללומדים ולעוסקות במקצועות הרפואה והטיפול ולכל מי שמתעניין בקריאת מאמרים רפואיים ובהבנתם. אין להתייחס לתוכן כייעוץ רפואי, אלא כהסבר על השיטה. הספר ”רפואה נתמכת ראיות” מסביר את עקרונות השיטה, החל מהבסיס ועד ניתוח מאמרים מסוגים שונים. קישור לרכישה באתר הפודקאסט - ebm.podbean.com
Episodes
Thursday Sep 19, 2024
סטטיסטיקה מרפאת 65 -רגרסיה לוגיסטית- ההסבר הפשוט
Thursday Sep 19, 2024
Thursday Sep 19, 2024
West Nile Virus Disease: A Descriptive Study of 228 Patients Hospitalized in a 4-County Region of Colorado in 2003
ברגרסיה לוגיסטית הערך החזוי אינו מספר אלא סיכוי. למשל, באנשים עם מעורבות מוחית של קדחת הנילוס המערבי, מה הסיכוי לתמותה. כמו ברגרסיה לינארית, מדובר במצבים בהם אנחנו רוצים לבחון כמה משתנים מסבירים בבת אחת כדי לחזות משתנה (חזוי) אחד. אך כאן המשתנה החזוי הוא קטגוריאלי. למשל, נפטר או לא נפטר. דרך פשוטה להסביר רגרסיה לוגיסטית, היא שהיא מאפשרת לנו לבצע תחזית בעזרת סיכוי בסיסי מסויים, המוכפל ביחסי סיכויים. הסיכוי כאן מוגדר כ odds ולא כ risk.
אם ברגרסיה הלינארית עסקנו בחיבור של מכפלות כדי לקבל ערך מספרי, כאן עוסקים בכפל של מכפלות כדי לקבל odds לאירוע.
בהמשך נסביר את נוסחת הרגרסיה בצורה מדויקת יותר, אך בינתיים אפשר להבינה כך: קבלת נוסחת הרגרסיה בעזרת המחקר מאפשרת לחשב את ה odds החזוי, כיוון שהיא מספקת odds בסיסי, וכן odds ratio מסויים עבור כל אחד מהמשתנים. למשל, במחקר שהוזכר בפרק, עבור דיכוי חיסוני , ה OR לתמותה היה 26. לכן, כאשר יש דיכוי חיסוני, ה odds לתמותה מוכפל ב 26.
Logistic regression
Odds
Odds ratio=OR
Multivariate analysis
Thursday Sep 12, 2024
סטטיסטיקה מרפאת 64-Odds and odds ratio
Thursday Sep 12, 2024
Thursday Sep 12, 2024
The Mortality of Doctors in Relation to Their Smoking Habits
כדי להבין רגרסיה לוגיסטית נצטרך להבהיר שני מושגים.
Odds
המונח "אודס" הוא דרך לבטא סיכון או סיכוי לאירוע מסוים. בכך הוא דומה מאוד לסיכון ("ריסק"). הוא מציין חלוקת שני מספרים: אלו עם האירוע חלקי אלו ללא האירוע, לדוגמה מספר האנשים שנפטרו חלקי מספר האנשים שלא נפטרו. בניגוד לסיכון, "ריסק", שיכול לקבל רק ערכים קטנים מ 1, אודס יכול להיות כל מספר חיובי. כאשר מדובר באירועים נדירים, האודס והריסק יהיו קרובים מאוד. (סליחה על הכיתוב באינגליש, אך האתר מסדר מלים באנגלית מחוץ לשורה) אך באירועים נפוצים הם יהיו שונים מאוד.
Odds ratio
אם יש לנו שתי קבוצות ובכל אחת מצאנו מהו ה"אודס", נוכל לבצע חלוקה בין שני אלו ולקבל את היחס ביניהם. זהו האודס רשיו, יחס הסיכויים. כאשר מדובר באירועים נדירים, יחס זה יהיה קרוב ל"רלטיב ריסק", יחס הסיכונים.
האודס מאפשר לעשות פעולות שלא ניתן לבצע עם ריסק, כיוון שתמיד יהיה אפשר להכפיל אודס באודס רשיו ולקבל אודס חדש. למשל, אם ידוע לנו מהו האודס לסרטן ריאה במעשנים קלים יחסית, נוכל להכפיל את האודס הזה באודס רשיו שחושב עבור עישון כבד ולקבל את האודס (הסיכוי) לסרטן ריאה במעשנים כבדים.
Odds
Odds ratio
Risk
Relative risk
Thursday Sep 05, 2024
סטטיסטיקה מרפאת 63 - מה קורה כשזה לא לינארי
Thursday Sep 05, 2024
Thursday Sep 05, 2024
Associations of Amyloid Burden, White Matter Hyperintensities, and Hippocampal Volume With Cognitive Trajectories in the 90+ Study
רגרסיה לינארית מצריכה קשר לינארי בין המשתנה המסביר למשתנה החזוי. מה קורה כאשר לא זה המצב?
ניתן לבצע טרנספורמציה (ביטוי מחדש) לאחד המשתנים, כפי שהסברנו בפרק "ביטוי מחדש"
ואז להכניס את המשתנה (לאחר הביטוי מחדש שלו) לנוסחת הרגרסיה. לכן לעתים כאשר נקרא מאמר שהשתמש ברגרסייה לינארית, ניתקל במושג טרנספורמציה. שיטה זו מקובלת ורצויה אך גוזלת מאתנו הקוראים את הבנת המשמעות הקלינית של מקדם הרגרסיה.
linear regression
log-transformation
assumptions
Thursday Aug 29, 2024
סטטיסטיקה מרפאת 62- R squared in the regression
Thursday Aug 29, 2024
Thursday Aug 29, 2024
Prediction Factors in the Determination of Final Height in Subjects Born Small for Gestational Age
רגרסיה לינארית מנסה לחזות עבור משתתפי המחקר מהו ערך המשתנה החזוי אצלם, בעזרת המשתנים המסבירים. עד כמה היא עושה את זה טוב? מדד פשוט הוא היחס בין השונות של המשתנה החזוי המוסברת על ידי נוסחת הרגרסיה, חלקי השונות הכללית של אותו משתנה חזוי. זהו ערך ה R בריבוע.
R squared
Total variation
Variation explained by the regression
Overfitting
Thursday Aug 22, 2024
סטטיסטיקה מרפאת 61- איך להבין תוצאות רגרסיה לינארית
Thursday Aug 22, 2024
Thursday Aug 22, 2024
Prediction Factors in the Determination of Final Height in Subjects Born Small for Gestational Age
ברגרסיה לינארית מרובה, תוצאת המחקר היא נוסחת רגרסיה עם מקדמים. אותם מקדמים הם הדבר שמעניין אותנו, כיוון שהם יראו לנו מהי השפעת משתנה מסוים, כששאר המשתנים נשארים קבועים. כאשר מדברים על תיקון (adjustment) למשתנים נוספים או שליטה (control) עליהם, הכוונה היא חישוב מקדם הרגרסיה של המשתנה שמעניין אותנו כאשר הרגרסיה כוללת גם את המשתנים הנוספים האלו.
מקדם הרגרסיה ברגרסיה לינארית אומר בכמה יחידות יעלה המשתנה החזוי כאשר יש עלייה של יחידה אחת במשתנה המסביר. אך כאשר יש משתנה מסביר קטגוריאלי (שהוא לא כמותי ולכן אין לו יחידות), צריך למצוא פתרון כדי לתת למשתנה הזה ערך מספרי. קטגוריה אחת בדרך כלל תקבל את הערך 0, וקטגוריה שניה את הערך 1, וערכים אלו יוכפלו במקדם. לכן עבור משתנה קטגוריאלי מקדם הרגרסיה אומר לנו בכמה יחידות יעלה המשתנה החזוי אצל משתתף בקטגוריה 1 יחסית למשתתף בקטגוריה 0 כאשר כל שאר המשתנים נשארים קבועים.
R squared in linear regression
Regression coefficients
Controlling/adjusting for other variables
Thursday Aug 15, 2024
סטטיסטיקה מרפאת 60 - רגרסיה לינארית מרובה
Thursday Aug 15, 2024
Thursday Aug 15, 2024
ברגרסיה לינארית מרובה יש יותר ממשתנה מסביר אחד, ולעתים קרובות משתנים מסבירים מרובים. כל משתנה מסביר מקבל מקדם משלו בנוסחת הרגרסיה, ואותו מקדם מייצג את השפעת אותו משתנה על המשתנה המוסבר, לו היינו שולטים על כל שאר המשתנים האחרים ("מנטרלים" אותם). מבחינת תיאור גרפי, המעבר מרגרסיה לינארית פשוטה לרגרסיה עם שני משתנים מסבירים דורש מעבר מקו על דף למרחב תלת ממדי, והמעבר לרגרסיה עם יותר משני משתנים מסבירים ניתן לדמיון רק בעולם בעל ממדים מרובים.
Multiple linear regression
Regression coefficients
Controlling for other variables
Thursday Aug 08, 2024
סטטיסטיקה מרפאת 59- קו הרגרסיה
Thursday Aug 08, 2024
Thursday Aug 08, 2024
Effects of Exposure to Road, Railway, Airport and Recreational Noise on Blood Pressure and Hypertension
קו הרגרסיה הלינארית הוא קו ישר שמייצג "דרך אמצע" ולא ייצוג מדוייק של קשר בין שני משתנים, אלא רק תיאור מקורב של הקשר הלינארי ביניהם. עבור משתתף בודד במחקר, הערך של המשתנה המוסבר לא ייפול בדיוק על קו הרגרסיה, כיוון שמלבד המשתנה המסביר ישנם תמיד עוד גורמים מסבירים וגם מרכיב של אקראיות. במלים אחרות, עבור אותו ערך של המשתנה המסביר, אצל שני משתתפים שונים במחקר הערך של המשתנה המוסבר יהיה שונה. למשל, גם לאחר קבלת קו הרגרסיה הלינארית המסבירה בעזרת רמת רעש באזור המגורים את לחץ הדם הדיאסטולי, אצל כל משתתף נותרת שארית, residual, בין המדידה של לחץ הדם אצלו לבין הערך שהיה צפוי אצלו לפי קו הרגרסיה. כדי שקו הרגרסיה ייצג בצורה הטובה ביותר את מירב המשתתפים במחקר, הוא נבנה בצורה כזו שתצמצם ככל האפשר את אותן שאריות, את ה residuals. הדרך המקובלת לעשות זאת היא על ידי מציאת הקו עבורו סכום ריבועי השאריות הוא הנמוך ביותר.
regression line
least squares
residuals
Thursday Aug 01, 2024
סטטיסטיקה מרפאת 58- משוואת הקו הישר ורגרסיה לינארית
Thursday Aug 01, 2024
Thursday Aug 01, 2024
Effects of Exposure to Road, Railway, Airport and Recreational Noise on Blood Pressure and Hypertension
משוואת קו ישר מייצגת קשר בין שני משתנים. הקשר הזה מבוטא בעזרת מקדם (המספר בו מוכפל המשתנה הראשון) ועוד קבוע. ברגרסיה לינארית, המקדם נקרה "בטא". הערך של המקדם הזה תלוי גם בעצמה של הקשר בין שני המשתנים וגם בקנה המידה שבו מדדו את המשתנים עצמם.
Y=mX+n
ובצורה המקובלת לכתיבה ברגרסיה לינארית
Y=beta(X)+beta 0
Simple linear regression
Beta (regression coefficient)
Thursday Jul 25, 2024
סטטיסטיקה מרפאת 57- איך נוסחת הרגרסיה עוזרת לה לתפקד
Thursday Jul 25, 2024
Thursday Jul 25, 2024
בפרקים הקודמים דברנו גם על תפקידי הרגרסיה וגם על נוסחת הרגרסיה. בפרק זה ננסה לחבר בין שניהם ולהבין איך נוסחת רגרסיה עוזרת להבין השפעה של מאפיין מסוים של מטופל, בעזרת המקדם שאותו מאפיין מקבל בנוסחה, איך היא עוזרת לנטרל ערפלנים, כאשר מכניסים לנוסחה משתנה שהוא ערפלן, ואיך היא יכולה לעזור לחיזוי עבור מטופל מחוץ למחקר.
Regression formula/equation- נוסחת הרגרסיה
Confounder- ערפלן
Prediction- חיזוי
Thursday Jul 18, 2024
סטטיסטיקה מרפאת 56- המח מבצע רגרסיות בחיי היום יום
Thursday Jul 18, 2024
Thursday Jul 18, 2024
בחיים הרגילים, המח שלנו מבצע משהו קצת דומה לרגרסיות, בפעולה של חישובים ותחזיות. הוא מתחשב במשתנים שונים, שכל אחד מהם מקבל חשיבות שונה. למשל, יכול להיות שהמשתנה "כמות האננסים" יקבל חשיבות שונה מ"כמות המלפפונים" כאשר אנחנו חוזים את התשלום הסופי בקופה אצל הירקן. המח מעריך את החשיבות (מקדם) של כל אחד מהמשתנים, ומבצע תחזית של הסכום הסופי. זו פעולה מוחית שדומה לרגרסיה לינארית. אפשר לחשוב על פעולה מוחית שדומה לרגרסיה לוגיסטית: איך העונה, כיסוי העננים בשמיים ומה שקרה אתמול עוזר לנו לחיזוי הסיכוי לגשם היום, ועל פעולה מוחית דומה לרגרסיית קוקס: איך סוג המכונית, כמות העליות הצפויה בדרך והמהירות בעליה יעזרו לנו לחזות את קצב צריכת הדלק.
רפואה נתמכת ראיות
בפרקים קצרים נצלול לתוך הספרות הרפואית, וננסה להבין מאמרים: האם להאמין למאמר, מה התוצאות אומרות, והאם הן רלוונטיות למטופלים. רפואה נתמכת ראיות היא שיטה לקבל ולהבין מידע- מטרתה ליישם את המידע המחקרי הטוב והחשוב ביותר עבור אבחנה וטיפול, תוך התחשבות במאפייני המטופל וערכיו, ועם שימוש בכל כישוריו של המטפל. הפודקאסט מיועד ללומדים ולעוסקים במקצועות הרפואה והטיפול ולכל מי שמתעניין בקריאת מאמרים רפואיים ובהבנתם. אין להתייחס לתוכן כייעוץ רפואי, אלא כהסבר על השיטה. יוצר ומגיש- ד"ר ישי מינצקר